### Joint Science & Technology Office for Chemical and Biological Defense (JSTO-CBD)

### Rapid Innovation Fund (RIF) Efforts

Mr. Larry Pollack and Dr. Charles Bass Defense Threat Reduction Agency JSTO-CBD (J9CB)

Beyond Phase II SBIR Conference and Mentor Protégé Training Week 14-18 August 2017, Chicago, IL



ANT REDUCTION FROM



### **CBDP Enterprise**





J9CB Mission: Lead DoD science and technology to anticipate, defend and safeguard against chemical and biological threats for the warfighter and the nation

**Advance Early Warning** 

Prepare For Surprise **Protect The Force** 



## What is RIF?

- Rapid, responsive acquisition and the engagement of small, innovative businesses in solving defense needs
- Validation and transition of innovative technologies developed predominantly by small businesses via Small Business
  Innovation Research (SBIR) and/or
  Small Business
  Technology Transfer (STTR)
  Programs
- Technologies address
  - Operational challenges
  - Critical national defense needs
- 2-year project maximum

\$3M



## Why RIF FOR JSTO-CBD?

- Rapid transition of innovative technologies
  - Developed technologies move to a higher Technology Readiness Level (TRL) for potential transition to acquisition program
    - Decrease risk to acquisition program
- Transition of technologies resulting from innovations that showed merit JSTO or CBD
  SBIR/STTR programs but is not quite ready for transition to a Program of Record/acquisition





## JSTO-CBD RIF Topic Development

- Topics developed as a follow-on to SBIR/STTR and JSTO-CBD funded programs
  - Had success for R&D efforts but not quite to the point required by acquisition Program of Record (POR)
- Technologies developed are innovative and could work for warfighters' identified need/gaps
  - Can help bridge the "valley of death"
- Use RIF Requirements (topics) to further mature technologies
- 2012-2017: JSTO-CBD developed nine RIF topics accepted into the BAA







## UNCLASSIFIED **Current and Past Funded JSTO-CBD RIF**

| Funding<br>Year       | Company                          | Title                                                                                        |
|-----------------------|----------------------------------|----------------------------------------------------------------------------------------------|
| 2012                  | Guild Associates (SB)            | Advanced Filtration Technologies                                                             |
| 2012                  | Guild Associates (SB)            | Guard Bed to Increase M98 Lifetime                                                           |
| 2012                  | TDA Research, Inc. (SB)          | Advanced Materials for Personal Filtrations<br>Systems                                       |
| 2013                  | Materials Modification Inc. (SB) | Multifunctional Chemical/Biological Warfare<br>Agent Repellant Coating for Military Textiles |
| 2014                  | RINI Technologies, Inc.<br>(SB)  | Personal Thermal Management Systems                                                          |
| 2014                  | InnoSense, LLC (SB)              | Anti-Fog Mask Coatings                                                                       |
| 2015                  | Aerosol Dynamics, Inc.<br>(SB)   | Wearable Respirator Protection Assessment<br>System                                          |
| 2016                  | NanoTerra, Inc. (SB)             | Rugged Temporary Protective Overcoat with<br>Significant Chemical Warfare Agent Resistance   |
| (SB) = Small Business |                                  |                                                                                              |



### Successes

- JSTO-CBD has had highest amount of success in technologies that transition into a POR using BA7 funding
  - Includes
    - Filter technologies
    - Anti-fog coatings
- Other successes include development of thermal management, agent repellant textiles, and a respirator assessment system

### Respirator Protection Assessment

System



### Thermal Management



### Agent repellant Textiles





### **Individual Protection Filters**

- Purpose
  - Develop next-gen filters for use in Chem/Bio individual protection systems utilizing state-ofthe-art materials
  - Focus on optimizing the balance between performance, hardness/ruggedness, and pressure drop
  - Focus on single pass technologies centered on reducing burden of current individual protection systems
- Challenge
  - Remove battlefield contaminants while maintaining performance with classical threats in single pass technology
  - Optimize the balance between performance, hardness/ruggedness, and pressure drop
- Successes
  - Prototype M61 filters exceeds performance specifications for ammonia, NO<sub>2</sub>, DMMP (nerve agent simulant), and methyl bromide
  - First demonstration of Metal Organic Framework (MOF) prototype M61 filter
  - Increased MOF batch size by >10x from gram to kilogram scale





### **Collective Protection Pre-Filters**

- Purpose
  - Develop replaceable guard bed and extend filter life by 50%
  - Develop next-gen filters for use in Chem/Bio collective protection systems utilizing state-of-the-art materials; focus on optimizing the balance between performance, ruggedness, and pressure drop
  - Focus on single pass technologies centered on reducing burden of collective protection systems
- Challenge
  - Remove battlefield contaminants while maintaining performance with classical threats
  - Optimize the balance between performance, ruggedness, and pressure drop
- Successes
  - Extended service life by 50%
  - Lowered cost of manufacturing and materials to 1/10 current cost
  - Long term testing conducted



ECBC and NSWC personnel installing guard beds.



Filter plenum with guard beds installed



# **Anti-Fog Mask Coatings**

- Purpose
  - Respiratory protection systems (e.g. Joint Service Air Mask (JSAM), M50, C50, and M53) that address CBRN environments are prone to lens fogging which can severely impact mission performance
  - Develop anti-fog coatings for respiratory protection systems
- Challenge
  - Prevent fog from forming on inside surface of respirator lenses (as well as outside surfaces)
  - Allow soldier to continue to perform duties while not being hindered by obscuration
- Successes:
  - Demonstrated capability of coating
  - Developed production rate capable method
    - Demonstrated production level run of coating
    - Demonstrated coating consistency



• Tested coating for light transmittance, haze, solvent durasmey, mechanical darability

Successful Anti-Fog coatings will transition to Joint Program Manager for Protection (JPM-P)



# Permanent Anti-Fog Coatings for Protective Masks (video demo)









